CH 233H

First Midterm Exam

Friday, April 22, 2016

Name_____

Please show your work for partial credit. If you need more spacefor an answer, use the back of the page and indicate where we should look.

You may not use notes or other materials with chemical information without the instructor's approval; necessary information is provided on pages at the back of the exam. Please do not use ipods or other music players.

hydrogen 4	4 (202)																	helium 2
Ĥ																		Н́е
1.0079 lithium	beryllium												boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												В	C	Ν	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												Â	Si	P	S	ĊI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
															-			
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63,546 silver	65.39 cadmium	69.723 Indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178,49	180.95	183.84	186.21	190.23	192.22	195.08	196,97	200.59	204.38	207.2	208,98	12091	12101	[222]
francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium	204.30	ununquadium	200.30	200	210	222
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt		Uuu			Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

1. (15 points) Provide a concise definition in terms of energy for each of the three laws of thermodynamics.

First Law:

Second Law:

Third Law:

2. (20 points) A reaction you saw briefly was the formation of benzene (C_6H_6) from acetylene (C_2H_2):

 $3 C_2 H_2(g) \longrightarrow C_6 H_6(g)$

A. What is ΔH_r° ?

B. What is ΔS_r° ?

2. (continued) C. At what temperature does a total pressure of 1.000 atm show an equilibrium partial pressure of 0.3167 atm benzene?

D. Because of the thermodynamics of this reaction, acetylene is never handled as a compressed gas but rather as a moderately (1.5 atm) pressurized solution (from which it easily vaporizes). Explain why you think this is more because of enthalpy or because of entropy.

3. (24 points) Many watch batteries or other "button" type batteries use the following reaction for the electrochemical cell:

 $Zn(s) + Ag_2O(s) \longrightarrow ZnO(s) + 2 Ag(s)$

A. Write the two half-cell reactions responsible for generating electrons in this battery.

B. Specify which metal will represent the anode, and which the cathode. Explain your reasoning.

C. What is the maximum voltage this cell can produce?

4. (21 points) We saw a demonstration where we bubbled CO_2 through a saturated solution of $Ca(OH)_2$.

A. Write a balanced chemical equation for the reaction that occurred, and point out how the product that forms leads to a visible change in appearance.

B. If enough CO_2 is bubbled through the solution, it becomes clear again. Use the following equilibria to explain what happens.

CaCO₃ (s) \leftarrow Ca⁺² (aq) + CO₃⁻² (aq) K_{sp} = 2.8 x 10⁻⁹ CO₂ (g) + 2H₂O (l) \leftarrow H₃O⁺(aq) + HCO₃⁻(aq) K_{eq} = 4.4 x 10⁻⁷ HCO₃⁻ (aq) + H₂O (l) \leftarrow H₃O⁺ (aq) + CO₃⁻² (aq) K_{eq} = 4.7 x 10⁻¹¹

C. Many of the world's historic artwork, monuments and architecture are made of marble, which is mostly crystalline $CaCO_3$. Based on the chemistry you describe in (B), explain whether you think it appropriate to keep a historically significant sculpture in an outdoor setting.

5. (20 points) Write the expected products for each of the following (possible) reactions. If you do not expect any reaction, write "NR."

A. $Cu_2O(s) + C(s)$ Heat

- B. $Li_2O(s) + C(s)$ Heat
- D. $FeCl_3(aq) + 6 KCN(aq) \longrightarrow$
- E. $CoCl_2(aq) + 4 NH_3(aq)$

Selected data that may be of use:

Physical constants:	
$g = 9.8 \text{ m/s}^2$	Gravitational Constant
$\varepsilon_0 = 8.85419 \times 10^{-12} \text{ C}^2/(\text{Nm}^2)$	Electric susceptibility of a vacuum
$c = 2.99792458 \times 10^{10} \text{ cm/s}$	Speed of light
R = 0.08206 L-atm/(mol-K) = 8.314 J/(mol-K)	Gas constant
$N = 6.022 \times 10^{23}$	Avogadro's Number
$k = 1.381 \times 10^{-23} \text{ m}^2 \text{kg}/(\text{K-s}^2)$	Boltzmann constant
$h = 6.626 \times 10^{-34} m^2 kg/s$	Planck's constant
F = 96485 C/mol	Faraday's constant
$\pi = 3.14159$	
e = 2.71828	

Properties of State

Species	$\Delta H^{o}{}_{f}$	S°
N ₂ (g)	0 kJ/mol	191.6 J/(mol-K)
O ₂ (g)	0 kJ/mol	205.1 J/(mol-K)
NO (g)	90.25 kJ/mol	210.8 J/(mol-K)
C (s) (graphite)	0 kJ/mol	5.74 J/(mol-K)
C ₂ H ₂ (g)	226.7 kJ/mol	200.9 J/(mol-K)
C ₆ H ₆ (g)	82.6 kJ/mol	269.3 J/(mol-K)
CO ₂ (g)	-393.5 kJ/mol	213.7 J/(mol-K)
Ag (s)	0 kJ/mol	42.55 J/(mol-K)
Ag+ (aq)	105.6 kJ/mol	72.68 J/(mol-K)
K+(aq)	-254.4 kJ/mol	102.5 J/(mol-K)
Zn (s)	0 kJ/mol	41.63 J/(mol-K)
Zn ⁺² (aq)	-153.9 kJ/mol	112.1 J/(mol-K)
Li (s)	0 kJ/mol	29.12 J/(mol-K)
Li ₂ O (s)	-595.8 kJ/mol	37.89 J/(mol-K)
Cu (s)	0 kJ/mol	33.15 J/(mol-K)
Cu ₂ O (s)	-170 kJ/mol	93 J/(mol-K)

Electromotive series:

TABLE 20.1Some Selected Standard Electrode (Reduction)Potentials at 25 °C

Reduction Half-Reaction

E°,∨

	= , :
Acidic solution	
$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.866
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2O(l)$	+2.075
$S_2O_8^{2-}(aq) + 2e^- \longrightarrow 2SO_4^{2-}(aq)$	+2.01
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1)$	+1.763
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(1)$	+1.51
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(1)$	+1.455
$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$	+1.358
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$	+1.33
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O(l)$	+1.23
$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1.229
$2 IO_3^{-}(aq) + 12 H^+(aq) + 10 e^- \longrightarrow I_2(s) + 6 H_2O(l)$	+1.20
$Br_2(1) + 2 e^- \longrightarrow 2 Br^-(aq)$	+1.065
$NO_3^{-}(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(1)$	+0.956
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.800
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.771
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	+0.695
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.340
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1) + SO_2(g)$	+0.17
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154
$S(s) + 2 H^+(aq) + 2 e^- \longrightarrow H_2S(g)$	+0.14
$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$	0
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.125
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}(\operatorname{s})$	-0.137
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.440
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.763
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.676
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.356
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.713
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.84
$K^+(aq) + e^- \longrightarrow K(s)$	-2.924
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.040
Basic solution	
$O_3(g) + H_2O(l) + 2 e^- \longrightarrow O_2(g) + 2 OH^-(aq)$	+1.246
$OCl^{-}(aq) + H_2O(l) + 2 e^{-} \longrightarrow Cl^{-}(aq) + 2 OH^{-}(aq)$	+0.890
$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	+0.401
$2 \operatorname{H}_2 O(1) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-(\operatorname{aq})$	-0.828