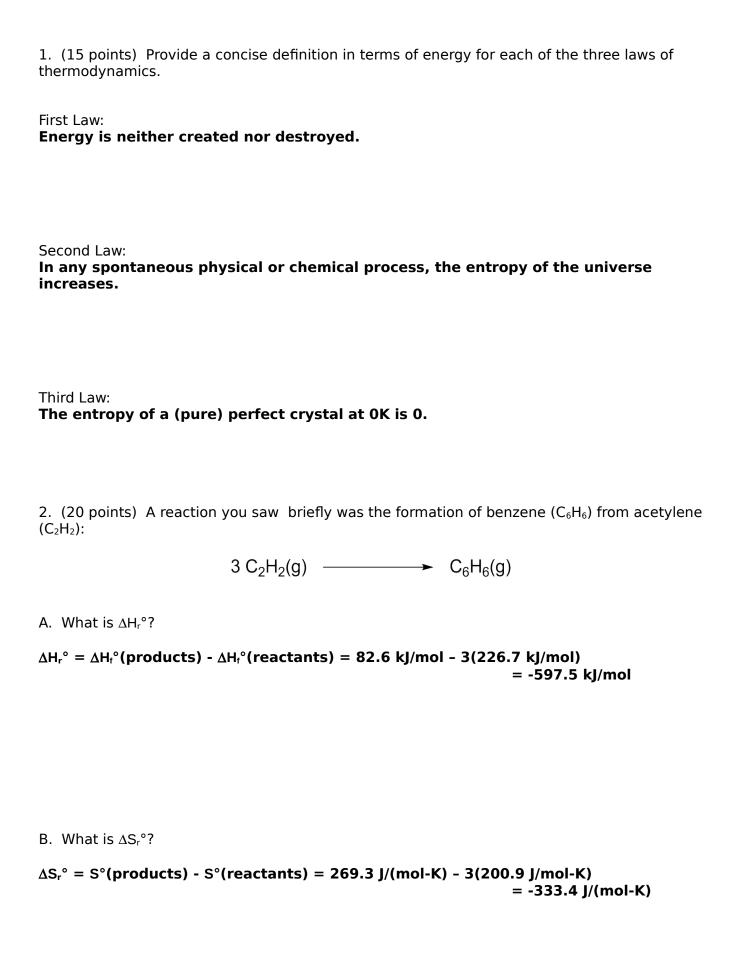
Name	
------	--

Please show your work for partial credit. If you need more spacefor an answer, use the back of the page and indicate where we should look.


You may not use notes or other materials with chemical information without the instructor's approval; necessary information is provided on pages at the back of the exam. Please do not use ipods or other music players.

hydrogen 1																	2007 19	helium 2
Н																		He
1.0079 lithium	beryllium											i	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	_4												5	6	7	8	9	10
Li	Be												В	С	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
														20020		5000		
Na	Mg												Al	Si	Р	S	CI	Ar
22.990	24.305			Minus Norm		I salamana tama		Taire		and a fine f		Table to	26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
									_									
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
39,098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51,996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58,693 palladium		65,39 cadmium	69.723 indium		74.922 antimony	78.96 tellurium	79.904 lodine	83.80 xenon
39.098 rubidium 37	40,078 strontium 38		44.956	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63,546 silver 47	65.39 cadmium 48	69.723 Indium 49	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52	79.904	83,80 xenon 54
39.098 rubidium 37 Rb	strontium 38 Sr		44.956 yttrium 39	47.867 zirconium 40 Zr	50.942 niobium 41 Nb	51.996 molybdenum 42 Mo	54.938 technetium 43 TC	55,845 ruthenium 44 Ru	58,933 rhodium 45 Rh	58.693 palladium 46 Pd	63,546 silver 47 Ag	65.39 cadmium 48 Cd	69.723 indium 49 In	72.61 tin 50 Sn	74.922 antimony 51 Sb	78.96 tellurium 52 Te	79.904 lodine 53	83,80 xenon 54 Xe
39.098 rubidium 37 Rb 85.468	40,078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42 Mo 95.94	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63,546 silver 47	65.39 cadmium 48	69.723 Indium 49	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52 Te 127.60	79.904 lodine	83.80 xenon 54 Xe 131.29
39.098 rubidium 37 Rb	40.078 strontium 38 Sr 87.62	57-70	44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224 hafnium 72	50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo	54.938 technetium 43 Tc [98]	55,845 ruthenium 44 Ru 101.07	58,933 rhodium 45 Rh 102,91	58.693 palladium 46 Pd 106.42	63,546 silver 47 Ag 107,87	65.39 cadmium 48 Cd 112.41	69.723 Indium 49 In	72.61 tin 50 Sn	74.922 antimony 51 Sb 121.76	78.96 tellurium 52 Te	79.904 lodine 53	83,80 xenon 54 Xe
39.098 rubidium 37 Rb 85.468 caesium	40.078 strontium 38 Sr 87.62 barium	57-70 X	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	55.845 ruthenium 44 Ru 101.07 osmium	58,933 rhodium 45 Rh 102,91 iridium	palladium 46 Pd 106.42 platinum	63,546 silver 47 Ag 107,87 gold	65,39 cadmium 48 Cd 112,41 mercury 80	69.723 Indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74,922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 lodine 53 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39,098 rubidium 37 Rb 85,468 caesium 55 Cs 132,91	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33		44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97	47.867 zirconium 40 Zr 91.224 hafmium 72 Hf 178.49	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95	51.996 molybdenum 42 MO 95.94 tungsten 74 W 183.84	54.938 technetium 43 TC [98] thenium 75 Re 186.21	55,845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08	63,546 silver 47 Ag 107,87 gold 79 Au 196,97	65,39 cadmium 48 Cd 112,41 mercury 80 Hg 200,59	69.723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 lodine 53 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontum 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium	47,867 zirconium 40 Zr 91,224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	54,938 technetium 43 TC [98] thenium 75 Re 186.21 bohrium	55,845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22 meitnerium	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium	69,723 Indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium 87	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88	× 89-102	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium 103	47,867 zirconium 40 Zr 91,224 hafnium 72 Hf 178,49 rutherfordium 104	50.942 nioblum 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	54,938 technetium 43 TC [98] rhenium 75 Re 186,21 bohrium 107	55.845 ruthenium 44 Ru 101.07 osmium 76 OS 190.23 hassium 108	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22 meitnerium 109	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium 111	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 Indium 49 In 114,82 thallium 81 TI 204,38	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontum 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium	47,867 zirconium 40 Zr 91,224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	54,938 technetium 43 TC [98] thenium 75 Re 186.21 bohrium	55,845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22 meitnerium	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 Indium 49 In 114,82 thallium 81 TI 204,38	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi 208.98	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn

*Lanthanide series

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Λ α	Th	Do	TT.	NIm	Dii	Λm	Cm	Bk	Cf	Ec	Em	MA	NIO
AC	1111	ra	U	IAD	ru	AIII	CIII	DK	CI	LS	ЕШ	IVIC	140
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

2. (continued) C. At what temperature does a total pressure of 1.000 atm show an equilibrium partial pressure of 0.3167 atm benzene?

$$K_{eq} = \frac{P_{benzene}}{P_{acetylene}^3} = \frac{0.3167}{(0.6833)^3} = 0.9927$$

$$\Delta G_r^{\circ} = -RTInK_{eq} = \Delta H_r^{\circ} - T\Delta S_r^{\circ}$$
; we know K_{eq} , ΔH_r° and ΔS_r° , so we can solve for T.

$$-8.314 \text{ J/(mol-K)} \text{ T in } (0.9927) = -597.5 \text{ kJ/mol} - \text{T(-333.4 J/(mol-K))}$$

$$0.0610 \text{ T (J/mol-K)} - 333.4 \text{ T (J/mol-K)} = -597,500 \text{ J/mol}$$

D. Because of the thermodynamics of this reaction, acetylene is never handled as a compressed gas but rather as a moderately (1.5 atm) pressurized solution (from which it easily vaporizes). Explain why you think this is more because of enthalpy or because of entropy.

Enthalpy is going to be dominant at the "normal" temperatures under which we might want to work (298K or room temperature; certainly never >350 K or 75 °C. We have to get to extremely high temperatures for $K_{\rm eq}$ to approach unity.

3. (24 points) Many watch batteries or other "button" type batteries use the following reaction for the electrochemical cell:

$$Zn(s) + Ag_2O(s)$$
 \longrightarrow $ZnO(s) + 2 Ag(s)$

A. Write the two half-cell reactions responsible for generating electrons in this battery.

$$Zn (s) \rightarrow Zn^{+2} (aq) + 2 e^{-}$$
 $E^{\circ} = +0.763 V$

$$Ag^{+}$$
 (aq) + e^{-} \rightarrow Ag (s) $E^{\circ} = + 0.800 \text{ V}$

B. Specify which metal will represent the anode, and which the cathode. Explain your reasoning.

Oxidation occurs at the anode, so Zn will be the anode.

Reduction occurs at the cathode, so Ag will be the cathode.

C. What is the maximum voltage this cell can produce?

The cell voltage is the sum of the half cells; +1.563 V.

4. (21 points) We saw a demonstration where we bubbled CO_2 through a saturated solution of $Ca(OH)_2$.

A. Write a balanced chemical equation for the reaction that occurred, and point out how the product that forms leads to a visible change in appearance.

$$Ca^{+2}(aq) + 2 OH^{-}(aq) + CO_{2}(g) \rightarrow CaCO_{3}(s) + H_{2}O(l)$$

The clear solution of Ca(OH)₂ generates solid CaCO₃, which precipitates to form a milky white suspension.

B. If enough CO_2 is bubbled through the solution, it becomes clear again. Use the following equilibria to explain what happens.

CaCO₃ (s)
$$\longrightarrow$$
 Ca⁺² (aq) + CO₃⁻² (aq) K_{sp} = 2.8 x 10⁻⁹
CO₂ (g) + 2H₂O (l) \longrightarrow H₃O⁺(aq) + HCO₃⁻(aq) K_{eq} = 4.4 x 10⁻⁷
HCO₃⁻ (aq) + H₂O (l) \longrightarrow H₃O⁺ (aq) + CO₃⁻² (aq) K_{eq} = 4.7 x 10⁻¹¹

Calcium carbonate can be transformed into soluble calcium bicarbonate— $Ca(HCO_3)_2$ —by the action of (acidic) H_2CO_3 . The net reaction is

CaCO₃ (s) + H₂O (l) + CO₂(g)
$$\rightleftharpoons$$
 Ca₊₂ (aq) + 2 HCO₃⁻ (aq)
This is eq. 1 + eq. 2 - eq. 3, so $K_{eq} = K_{eq}(1) \times K_{eq}(2) / K_{eq}(3) = 2.62 \times 10^{-5}$

C. Many of the world's historic artwork, monuments and architecture are made of marble, which is mostly crystalline $CaCO_3$. Based on the chemistry you describe in (B), explain whether you think it appropriate to keep a historically significant sculpture in an outdoor setting.

Since CO_2 is always part of the atmosphere, rain water will always contain some carbonic acid. This will,over time, dissolve the calcium carbonate in marble. However, due to the low net K_{eq} we see above, this will never happen all at once. But over time, this will erode the stone. It is fortunate that much historical stonework (particularly sculpture and statuary) are housed indoors and not exposed to the elements. (This is also the process that leads to natural formations in the Oregon Caves and other subterranean cave systems.)

The phenomenon has been exacerbated by industrial pollution; nitrogen and sulfur oxides make rain much more acidic and accelerate the process. This has been seen as a particular problem in Greece, where many of the works on the Parthenon are eroding, and in Rome, where a lot of historical stonework shows extreme damage.

5. (20 points) Write the expected products for each of the following (possible) reactions. If you do not expect any reaction, write "NR."

A.
$$Cu_2O(s) + C(s)$$
 Heat \rightarrow 2Cu(s) + $CO_2(g)$

C. AgCl (s) +
$$2NH_3$$
 (aq) \longrightarrow Ag(NH_3)₂⁺ (aq) + Cl- (aq)

D.
$$FeCl_3$$
 (aq) + 6 KCN (aq) \longrightarrow $Fe(CN)_6^{-3}$ (aq) + 6 K⁺ (aq) + 3 Cl⁻ (aq)

E.
$$CoCl_2 (aq) + 4 NH_3 (aq)$$
 \longrightarrow $Co(NH_3)_4 (OH_2)^{+2} (aq) + 2 Cl^- (aq)$

Selected data that may be of use:

Physical constants:

 $g = 9.8 \text{ m/s}^2$

 $\epsilon_0 = 8.85419 \times 10^{-12} \,\mathrm{C}^2/(\mathrm{Nm}^2)$

 $c = 2.99792458 \times 10^{10} \text{ cm/s}^{-1}$

R = 0.08206 L-atm/(mol-K) = 8.314 J/(mol-K)

 $N = 6.022 \times 10^{23}$

 $k = 1.381 \times 10^{-23} \text{ m}^2\text{kg/(K-s}^2)$ $h = 6.626 \times 10^{-34} \text{ m}^2\text{kg/s}$

F = 96485 C/mol

 $\pi = 3.14159$

e = 2.71828

Gravitational Constant

Electric susceptibility of a vacuum

Speed of light Gas constant

Avogadro's Number Boltzmann constant

Planck's constant

Faraday's constant

Properties of State

Species	ΔH^{o_f}	S°
$N_2(g)$	0 kJ/mol	191.6 J/(mol-K)
O ₂ (g)	0 kJ/mol	205.1 J/(mol-K)
NO (g)	90.25 kJ/mol	210.8 J/(mol-K)
C (s) (graphite)	0 kJ/mol	5.74 J/(mol-K)
C_2H_2 (g)	226.7 kJ/mol	200.9 J/(mol-K)
C_6H_6 (g)	82.6 kJ/mol	269.3 J/(mol-K)
CO ₂ (g)	-393.5 kJ/mol	213.7 J/(mol-K)
Ag (s)	0 kJ/mol	42.55 J/(mol-K)
Ag ⁺ (aq)	105.6 kJ/mol	72.68 J/(mol-K)
K ⁺ (aq)	-254.4 kJ/mol	102.5 J/(mol-K)
Zn (s)	0 kJ/mol	41.63 J/(mol-K)
Zn ⁺² (aq)	-153.9 kJ/mol	112.1 J/(mol-K)
Li (s)	0 kJ/mol	29.12 J/(mol-K)
Li ₂ O (s)	-595.8 kJ/mol	37.89 J/(mol-K)
Cu (s)	0 kJ/mol	33.15 J/(mol-K)
Cu_2O (s)	-170 kJ/mol	93 J/(mol-K)

Electromotive series:

TABLE 20.1 Some Selected Standard Electrode (Reduction) Potentials at 25 °C

Reduction Half-Reaction	E°,∨
Acidic solution	
$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.866
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2O(1)$	+2.075
$S_2O_8^{2-}(aq) + 2e^- \longrightarrow 2SO_4^{2-}(aq)$	+2.01
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1)$	+1.763
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(1)$	+1.51
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(1)$	+1.455
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.358
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$	+1.33
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O(1)$	+1.23
$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(1)$	+1.229
$2 IO_3^-(aq) + 12 H^+(aq) + 10 e^- \longrightarrow I_2(s) + 6 H_2O(1)$	+1.20
$Br_2(1) + 2e^- \longrightarrow 2Br^-(aq)$	+1.065
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0.956
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.800
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.771
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	+0.695
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.340
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1) + SO_2(g)$	+0.17
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154
$S(s) + 2 H^{+}(aq) + 2 e^{-} \longrightarrow H_2S(g)$	+0.14
$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.125
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}(\operatorname{s})$	-0.137
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.440
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.763
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.676
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.356
$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2.713
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.84
$K^+(aq) + e^- \longrightarrow K(s)$	-2.924
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.040
Basic solution	
$O_3(g) + H_2O(1) + 2e^- \longrightarrow O_2(g) + 2OH^-(aq)$	+1.246
$OCl^{-}(aq) + H_2O(l) + 2e^{-} \longrightarrow Cl^{-}(aq) + 2OH^{-}(aq)$	+0.890
$O_2(g) + 2 H_2O(1) + 4 e^- \longrightarrow 4 OH^-(aq)$	+0.401
$2 H_2O(1) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.828